Search results for "decay [resonance]"
showing 10 items of 195 documents
Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization
2020
We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…
Spectroscopic studies of neutron-deficient light nuclei: decay properties of 21Mg, 25Si and 26P
2003
Neutron‐deficient nuclei with Tz equals to −3/2 and −2 have been produced at the GANIL/LISE3 facility in fragmentation reactions of a 95 MeV/u 36Ar primary beam in a 12C target. For the first time, β‐delayed proton and β‐γ emission has been simultaneously observed in the decay of 21Mg, 25Si and 26P. The decay scheme of the latter is proposed and the Gamow‐Teller strength distribution in its β decay is compared to shell‐model calculations based on the USD interaction. The B(GT) values derived from the absolute measurement of the β‐branching ratios are in agreement with the quenching factor of about 60% obtained for allowed Gamow‐Teller transitions in this mass region. A precise half‐life of …
Continuous separation and identification of neutronrich neptunium isotopes from heavy-ion reactions by means of the centrifuge system “sisak”
1986
Abstract Neutron-rich neptunium isotopes formed in direct transfer reactions between 136 Xe projectiles and targets of 244 Pu have been separated from other reaction products with the on-line liquid-liquid extraction system SISAK. A four-detector delay method was used to determine the half-lives of the previously unknown isotopes 243 Np and 244 Np. From the decay of the 287.4 keV γ-line a half-life of 1.8 ± 0.3 min was determined for 243 Np. From the decay curves of the γ-lines at 162.7 and 216.7 keV, which fit into the known level scheme of 244 Pu, a half-life of 2.5 ± 0.3 min results for 244 Np.
Low energy properties of color-flavor locked superconductors
2005
We discuss some low energy properties of color-flavor locked (CFL) superconductors. First, we study how an external magnetic field affects their Goldstone physics in the chiral limit, stressing that there is a long-range component of the field that penetrates the superconductor. We note that the most remarkable effect of the applied field is giving a mass to the charged pions and kaons. By estimating this effect, we see that for values $e B \sim 2 f_\pi \Delta$, where $\Delta$ is the quark gap, and $f_\pi$ the pion decay constant, the charged Goldstone bosons become so heavy, that they turn out to be unstable. The symmetry breaking pattern is then changed, agreeing with that of the magnetic…
Ion traps in nuclear physics : recent results and achievements
2016
Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purified ion sa…
s-wave charmed baryon resonances from a coupled-channel approach with heavy quark symmetry
2009
We study charmed baryon resonances which are generated dynamically within a unitary meson-baryon coupled channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector meson exchanges to a SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-w…
Respirometry for the Characterization of Heterotrophic Biomass Activity: Application to a MBR Pilot Plant Operated with Two Different Start-Up Strate…
2016
A membrane bioreactor (MBR) pilot plant was operated in two subsequent experimental periods (namely, Periods I and II) with different start-up and sludge withdrawal strategies to study its peculiar biokinetic behavior by using respirometric techniques. Two extreme operational conditions were chosen to investigate the different biomass activity under dynamic or pseudostationary conditions during and after the start-up phases. Particularly, the MBR pilot plant was operated with the same volumetric loading rate (VLR) and permeate flux but differently managed during the start-up phase. In Period I, the MBR pilot plant was started up without sludge inoculum and operated without sludge withdrawal…
Correlation at low temperature I. Exponential decay
2003
Abstract The present paper generalizes the analysis in (Ann. H. Poincare 1 (2000) 59, Math. J. (AMS) 8 (1997) 123) of the correlations for a lattice system of real-valued spins at low temperature. The Gibbs measure is assumed to be generated by a fairly general Hamiltonian function with pair interaction. The novelty, as compared to [2,20], is that the single-site (self-) energies of the spins are not required to have only a single local minimum and no other extrema. Our derivation of exponential decay of correlations goes through the spectral analysis of a deformed Laplacian closely related to the Witten Laplacian studied in [2,20]. We prove that this Laplacian has a spectral gap above zero…
Infrared enhanced analytic coupling and chiral symmetry breaking in QCD
2005
We study the impact on chiral symmetry breaking of a recently developed model for the QCD analytic invariant charge. This charge contains no adjustable parameters, other than the QCD mass scale $\Lambda$, and embodies asymptotic freedom and infrared enhancement into a single expression. Its incorporation into the standard form of the quark gap equation gives rise to solutions for the dynamically generated mass that display a singular confining behaviour at the origin. Using the Pagels-Stokar method we relate the obtained solutions to the pion decay constant $f_{\pi}$, and estimate the scale parameter $\Lambda$, in the presence of four active quarks, to be about 880 MeV.
The $^{144}$Ce source for SOX
2015
International audience; The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the (144)Ce-(144)Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according t…